**See Also**

evaluating expressions video, evaluating logarithmic expressions video, expressions video, logarithmic expressions video, logarithms video.

This math video tutorial gives a step by step explanation to a math problem on "Evaluating Logarithmic Expressions 3".

Evaluating logarithmic expressions 3 video involves evaluating expressions, evaluating logarithmic expressions, expressions, logarithmic expressions, logarithms. The video tutorial is recommended for 7th Grade, 8th Grade, 9th Grade, 10th Grade, 11th Grade, and/or 12th Grade Math students studying Algebra, Pre-Algebra, Pre-Calculus, and/or Advanced Algebra.

For a given combination of values for the free variables, an expression may be evaluated, although for some combinations of values of the free variables, the expression may be undefined. Thus an expression represents a function whose inputs are the values assigned the free variables and whose output is the resulting value of the expression.

An expression is a combination of numbers, operators, grouping symbols (such as brackets and parentheses) and/or free variables and bound variables arranged in a meaningful way which can be evaluated. Bound variables are assigned values within the expression (they are for internal use) while free variables can take on values from outside the expression.

In mathematics, the logarithm of a number to a given base is the power or exponent to which the base must be raised in order to produce the number.

For example, the logarithm of 1000 to the base 10 is 3, because 10 raised to the power of 3 is 1000; the base 2 logarithm of 32 is 5 because 2 to the power 5 is 32.

For example, the logarithm of 1000 to the base 10 is 3, because 10 raised to the power of 3 is 1000; the base 2 logarithm of 32 is 5 because 2 to the power 5 is 32.